Convergence and superconvergence of variational discretization for parabolic bilinear optimization problems

In this paper, we investigate a variational discretization approximation of parabolic bilinear optimal control problems with control constraints. For the state and co-state variables, triangular linear finite element and difference methods are used for space and time discretization, respectively, su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inequalities and applications 2019-09, Vol.2019 (1), p.1-13, Article 239
Hauptverfasser: Tang, Yuelong, Hua, Yuchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate a variational discretization approximation of parabolic bilinear optimal control problems with control constraints. For the state and co-state variables, triangular linear finite element and difference methods are used for space and time discretization, respectively, superconvergence in H 1 -norm between the numerical solutions and elliptic projections are derived. Although the control variable is not discrete directly, convergence of second order in L 2 -norm is obtained. These theoretical results are confirmed by two numerical examples.
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-019-2195-3