Convergence and superconvergence of variational discretization for parabolic bilinear optimization problems
In this paper, we investigate a variational discretization approximation of parabolic bilinear optimal control problems with control constraints. For the state and co-state variables, triangular linear finite element and difference methods are used for space and time discretization, respectively, su...
Gespeichert in:
Veröffentlicht in: | Journal of inequalities and applications 2019-09, Vol.2019 (1), p.1-13, Article 239 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate a variational discretization approximation of parabolic bilinear optimal control problems with control constraints. For the state and co-state variables, triangular linear finite element and difference methods are used for space and time discretization, respectively, superconvergence in
H
1
-norm between the numerical solutions and elliptic projections are derived. Although the control variable is not discrete directly, convergence of second order in
L
2
-norm is obtained. These theoretical results are confirmed by two numerical examples. |
---|---|
ISSN: | 1029-242X 1025-5834 1029-242X |
DOI: | 10.1186/s13660-019-2195-3 |