Quantum Control of the Tin-Vacancy Spin Qubit in Diamond

Group-IV color centers in diamond are a promising light-matter interface for quantum networking devices. The negatively charged tin-vacancy center (SnV) is particularly interesting, as its large spin-orbit coupling offers strong protection against phonon dephasing and robust cyclicity of its optical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical Review X 2021-11, Vol.11 (4), p.041041, Article 041041
Hauptverfasser: Debroux, Romain, Michaels, Cathryn P., Purser, Carola M., Wan, Noel, Trusheim, Matthew E., Arjona Martínez, Jesús, Parker, Ryan A., Stramma, Alexander M., Chen, Kevin C., de Santis, Lorenzo, Alexeev, Evgeny M., Ferrari, Andrea C., Englund, Dirk, Gangloff, Dorian A., Atatüre, Mete
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Group-IV color centers in diamond are a promising light-matter interface for quantum networking devices. The negatively charged tin-vacancy center (SnV) is particularly interesting, as its large spin-orbit coupling offers strong protection against phonon dephasing and robust cyclicity of its optical transitions toward spin-photon-entanglement schemes. Here, we demonstrate multiaxis coherent control of the SnV spin qubit via an all-optical stimulated Raman drive between the ground and excited states. We use coherent population trapping and optically driven electronic spin resonance to confirm coherent access to the qubit at 1.7 K and obtain spin Rabi oscillations at a rate of Ω/2π=19.0(1)  MHz. All-optical Ramsey interferometry reveals a spin dephasing time of T_{2}^{*}=1.3(3)  μs, and four-pulse dynamical decoupling already extends the spin-coherence time to T_{2}=0.30(8)  ms. Combined with transform-limited photons and integration into photonic nanostructures, our results make the SnV a competitive spin-photon building block for quantum networks.
ISSN:2160-3308
2160-3308
DOI:10.1103/PhysRevX.11.041041