Raman signal extraction from BCARS intensity measurements using deep learning with a prior excitation profile

Broadband Coherent anti-Stokes Raman Scattering (BCARS) microscopy is a useful technique for chemical analysis and allows the full vibrational fingerprint spectrum of a specimen to be obtained in millisec-onds. A major drawback to this technique is the presence of the non-resonant background respons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ Web of conferences 2023, Vol.287, p.13019
Hauptverfasser: Muddiman, Ryan, O’Dwyer, Kevin, Camp, Charles H., Hennelly, Bryan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Broadband Coherent anti-Stokes Raman Scattering (BCARS) microscopy is a useful technique for chemical analysis and allows the full vibrational fingerprint spectrum of a specimen to be obtained in millisec-onds. A major drawback to this technique is the presence of the non-resonant background response producing interference which prevents classical spectral analysis of the sample. Using a convolutional autoencoder and measurements of the laser characteristics, we have shown that it is possible to remove this background with-out requiring supervision, as is typically required for conventional removal methods. This approach therefore simplifies the analysis of hyperspectral images obtained with BCARS.
ISSN:2100-014X
2100-014X
DOI:10.1051/epjconf/202328713019