Real-time segmentation and classification of whole-slide images for tumor biomarker scoring

Histopathology image segmentation and classification are essential for diagnosing and treating breast cancer. This study introduced a highly accurate segmentation and classification for histopathology images using a single architecture. We utilized the famous segmentation architectures, SegNet and U...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of King Saud University. Computer and information sciences 2024-11, Vol.36 (9), p.102204, Article 102204
Hauptverfasser: Hasan, Md Jahid, Ahmad, Wan Siti Halimatul Munirah Wan, Fauzi, Mohammad Faizal Ahmad, Lee, Jenny Tung Hiong, Khor, See Yee, Looi, Lai Meng, Abas, Fazly Salleh, Adam, Afzan, Chan, Elaine Wan Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Histopathology image segmentation and classification are essential for diagnosing and treating breast cancer. This study introduced a highly accurate segmentation and classification for histopathology images using a single architecture. We utilized the famous segmentation architectures, SegNet and U-Net, and modified the decoder to attach ResNet, VGG and DenseNet to perform classification tasks. These hybrid models are integrated with Stardist as the backbone, and implemented in a real-time pathologist workflow with a graphical user interface. These models were trained and tested offline using the ER-IHC-stained private and H&E-stained public datasets (MoNuSeg). For real-time evaluation, the proposed model was evaluated using PR-IHC-stained glass slides. It achieved the highest segmentation pixel-based F1-score of 0.902 and 0.903 for private and public datasets respectively, and a classification-based F1-score of 0.833 for private dataset. The experiment shows the robustness of our method where a model trained on ER-IHC dataset able to perform well on real-time microscopy of PR-IHC slides on both 20x and 40x magnification. This will help the pathologists with a quick decision-making process.
ISSN:1319-1578
DOI:10.1016/j.jksuci.2024.102204