Muramyl dipeptide potentiates Staphylococcus aureus lipoteichoic acid-induced nitric oxide production via TLR2/NOD2/PAFR signaling pathways

Lipoteichoic acid (LTA) and peptidoglycan (PGN) are considered as key virulence factors of , which is a representative sepsis-causing Gram-positive pathogen. However, cooperative effect of LTA and PGN on nitric oxide (NO) production is still unclear despite the pivotal roles of NO in initiation and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in immunology 2024-12, Vol.15, p.1451315
Hauptverfasser: Im, Jintaek, Jeon, Jun Ho, Lee, Dongwook, Park, Jeong Woo, Jun, Woohyung, Lim, Suwon, Park, Ok-Jin, Yun, Cheol-Heui, Han, Seung Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lipoteichoic acid (LTA) and peptidoglycan (PGN) are considered as key virulence factors of , which is a representative sepsis-causing Gram-positive pathogen. However, cooperative effect of LTA and PGN on nitric oxide (NO) production is still unclear despite the pivotal roles of NO in initiation and progression of sepsis. We here evaluated the cooperative effects of LTA (SaLTA) and muramyl dipeptide (MDP), the minimal structure of PGN, on NO production in both a mouse macrophage-like cell line, RAW 264.7 and mouse bone marrow-derived macrophages (BMMs). Although MDP alone did not affect NO production, MDP potently enhanced SaLTA-induced NO production via the expression of inducible NO synthases. The enhanced NO production was ameliorated in BMMs from TLR2-, CD14-, MyD88-, and NOD2-deficient mice. Moreover, the augmented SaLTA-induced NO production by MDP was attenuated by inhibitors specific for PAFR and MAP kinases. Furthermore, MDP also potently increased SaLTA-induced activities of STAT1, NF-κB, and AP-1 transcription factors, and specific inhibitors for these transcription factors suppressed the elevated NO production. Collectively, these results demonstrated that MDP potentiates SaLTA-induced NO production via TLR2/NOD2/PAFR, MAP kinases signaling axis, resulting in the activation of NF-κB, AP-1 and STAT1 transcription factors.
ISSN:1664-3224
1664-3224
DOI:10.3389/fimmu.2024.1451315