MULTI-SPECTRAL EDGE DETECTION FOR ENHANCED EXTRACTION AND CLASSIFICATION OF HOMOGENEOUS REGIONS IN REMOTELY SENSED IMAGES
Mediterranean environments are characterized by high spatial and temporal heterogeneity due to their climatological, lithological, soil and vegetation geo-diversity and their high population density which cause growing land-use transformations at the rural-urban fringe. Remote sensing mapping and mo...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mediterranean environments are characterized by high spatial and temporal heterogeneity due to their climatological, lithological, soil and vegetation geo-diversity and their high population density which cause growing land-use transformations at the rural-urban fringe. Remote sensing mapping and monitoring land cover in these environments under such conditions is a challenging task. Instead of the common per pixel approach we suggest combining application of an object-oriented classification based on image objects separation through edge detection with unsupervised classification. The main elements of our methodology are: (1) separating image areas into vegetation/ non-vegetation regions utilizing NDVI threshold; (2) calculation of the spatial variance at different bands; (3) image objects extraction through enhancement of the differences between edge pixels and regions of homogeneity; (4) per-object classification for the homogenous areas; (5) overlaying large unclassified image areas by the results of ISODATA (Iterative Self-Organizing Data Analysis) unsupervised classification. Our methodology was applied on multi-spectral images acquired by the VENμS remote sensing system. The study area consists of a typical rural area in semi-arid climate regions undergoing increasing urbanization. Six test areas were selected representing different spatial combinations of natural/ planted forests, agriculture and built-up land-use/ land cover types. While bare fields were poorly classified, areas of low vegetation cover were classified with producer/user accuracies below 60%, built-up areas and roads, cultivated areas, shrublands and bata (dwarf-shrubs) and rocky areas gained good producer/ user classification accuracies. |
---|---|
ISSN: | 2194-9034 1682-1750 2194-9034 |
DOI: | 10.5194/isprs-archives-XLIII-B3-2022-49-2022 |