Physicochemical Properties and Intestinal Health Promoting Water-Insoluble Fiber Enriched Fraction Prepared from Blanched Vegetable Soybean Pod Hulls

Different methods can be used to change the fiber compositions of food, and they consequently affect the physicochemical properties and physiological activities. The present study compared the effects of a blanching treatment on the physicochemical properties of water-insoluble fiber enriched fracti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2019-05, Vol.24 (9), p.1796
Hauptverfasser: Huang, Ya-Ling, Hsieh, I-Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Different methods can be used to change the fiber compositions of food, and they consequently affect the physicochemical properties and physiological activities. The present study compared the effects of a blanching treatment on the physicochemical properties of water-insoluble fiber enriched fraction (WIFF) from three varieties of vegetable soybean pod hulls (tea vegetable soybean pod hull, TVSPH; black vegetable soybean pod hull, BVSPH; 305 vegetable soybean pod hulls, 305VSPH) and evaluated their effects on intestinal health in hamsters. Blanching may increase the soluble dietary fiber (SDF) content of WIFF in the 305VSPH variety by solubilizing cell wall components and releasing water-soluble sugars. Thus, the WIFF in the 305VSPH variety after blanching may be composed of cellulose and pectic substances. The WIFF of the blanched 305VSPH (B-305VSPH) variety exhibited the highest physicochemical properties, such as a water-retention capacity (11.7 g/g), oil-holding capacity (9.34 g/g), swelling property (10.8 mL/g), solubility (12.2%), and cation-exchange capacity (221 meq/kg), of the three varieties examined. The supplementation of B-305VSPH WIFF in the diet resulted in significantly ( < 0.05) lower cecal and fecal ammonia; activities of fecal β-d-glucosidase, β-d-glucuronidase, mucinase, and urease; as well as higher cecal total short-chain fatty acids relative to other diets. In addition, microbial analysis suggested that fecal bifidobacteria growth was enhanced by the consumption of B-305VSPH WIFF. Therefore, B-305VSPH WIFF may be applicable as a potential functional ingredient in the food industry for the improvement of intestinal health.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules24091796