Pitfalls in post hoc analyses of population receptive field data
•Circular data binning produces artifactual changes in the form of regression towards the mean.•Analysis type, data properties, and circular data cleaning shape these artifactual changes.•Circular data cleaning and sorting produce artifactual changes even without circular data binning.•These pitfall...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2022-11, Vol.263, p.119557-119557, Article 119557 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Circular data binning produces artifactual changes in the form of regression towards the mean.•Analysis type, data properties, and circular data cleaning shape these artifactual changes.•Circular data cleaning and sorting produce artifactual changes even without circular data binning.•These pitfalls can lead to faulty claims about changes in population receptive fields.
[Display omitted]
Data binning involves grouping observations into bins and calculating bin-wise summary statistics. It can cope with overplotting and noise, making it a versatile tool for comparing many observations. However, data binning goes awry if the same observations are used for binning (selection) and contrasting (selective analysis). This creates circularity, biasing noise components and resulting in artifactual changes in the form of regression towards the mean. Importantly, these artifactual changes are a statistical necessity. Here, we use (null) simulations and empirical repeat data to expose this flaw in the scope of post hoc analyses of population receptive field data. In doing so, we reveal that the type of data analysis, data properties, and circular data cleaning are factors shaping the appearance of such artifactual changes. We furthermore highlight that circular data cleaning and circular sorting of change scores are selection practices that result in artifactual changes even without circular data binning. These pitfalls might have led to erroneous claims about changes in population receptive fields in previous work and can be mitigated by using independent data for selection purposes. Our evaluations highlight the urgency for us researchers to make the validation of analysis pipelines standard practice. |
---|---|
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2022.119557 |