Trends for the Thermal Degradation of Polymeric Materials: Analysis of Available Techniques, Issues, and Opportunities

This paper examines the degradation trends of polymeric materials during heat conversion and solvolysis processes. The presence of different fractions of polymeric materials, such as PET, PP, SBR, ABS, resin, and tier waste, necessitates the use of different procedures for degradation, transformatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-09, Vol.12 (18), p.9138
Hauptverfasser: Gałko, Grzegorz, Sajdak, Marcin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper examines the degradation trends of polymeric materials during heat conversion and solvolysis processes. The presence of different fractions of polymeric materials, such as PET, PP, SBR, ABS, resin, and tier waste, necessitates the use of different procedures for degradation, transformation, and further elimination from the natural environment. A significant part of the work was devoted to discussing the issue of thermal pyrolysis, taking into account the chemical composition and the possible impact of the process reaction mechanism, the type of raw material used, and the influence of the process temperature on the yields of low, medium, and high boiling products. The issue was extended to the possibility of decomposition of polymers based on the use of catalytic additives for the improvement and efficiency of the process and the structural modification of reactors. The major goal of this investigation of these various options was to generate a spectrum of accessible strategies for polymeric material degradation. The optimal technique depends on the polymer type and predicted final product qualities. Different catalysts, such as ZSM-5 (Zeolite Socony Mobil-5 one of the most efficient catalysts), ZSM-5 with ammonium groups, and ZSM-5 with 10% Ni, improved the efficiency of several heating processes. The final products after polymeric material degradation were determined by the type and conditions of the degradation processes, results of the materials characterisation, and the scale of the reactors utilised.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12189138