Modulus adaptive lubricating prototype inspired by instant muscle hardening mechanism of catfish skin
In nature, living organisms evolve unique functional components with mechanically adaptive compatibility to cater dynamic change of interface friction/lubrication. This mechanism can be used for developing intelligent artificial lubrication-regulation systems. Inspired by the muscle hardening-trigge...
Gespeichert in:
Veröffentlicht in: | Nature communications 2022-01, Vol.13 (1), p.377-377, Article 377 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In nature, living organisms evolve unique functional components with mechanically adaptive compatibility to cater dynamic change of interface friction/lubrication. This mechanism can be used for developing intelligent artificial lubrication-regulation systems. Inspired by the muscle hardening-triggered lubrication of
longsnout catfish
, here we report a modulus adaptive lubricating hydrogel prototype consisting of top mucus-like hydrophilic lubricating layer and muscle-like bottom hydrogel that can stiffen via thermal-triggered phase separation. It exhibits instant switch from soft/high frictional state (~0.3 MPa,
μ
~0.37) to stiff/lubricating state (~120 MPa,
μ
~0.027) in water upon heating up. Such switchable lubrication is effective for wide range of normal loads and attributed to the modulus-dominated adaptive contact mechanism. As a proof-of-concept, switchable lubricating hydrogel bullets and patches are engineered for realizing controllable interface movements. These important results demonstrate potential applications in the fields of intelligent motion devices and soft robots.
Stimuli responsive materials are interesting for applications in different technological fields, but realizing controllable surface friction-control based on the change of the modulus of a material is less investigated. Here the authors demonstrate a lubrication regulating strategy and prototype based on thermally triggered changes of the modulus of a hydrogel. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-28038-9 |