Machine Learning-Driven Innovations in Microfluidics

Microfluidic devices have revolutionized biosensing by enabling precise manipulation of minute fluid volumes across diverse applications. This review investigates the incorporation of machine learning (ML) into the design, fabrication, and application of microfluidic biosensors, emphasizing how ML a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors (Basel) 2024-12, Vol.14 (12), p.613
Hauptverfasser: Park, Jinseok, Kim, Yang Woo, Jeon, Hee-Jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microfluidic devices have revolutionized biosensing by enabling precise manipulation of minute fluid volumes across diverse applications. This review investigates the incorporation of machine learning (ML) into the design, fabrication, and application of microfluidic biosensors, emphasizing how ML algorithms enhance performance by improving design accuracy, operational efficiency, and the management of complex diagnostic datasets. Integrating microfluidics with ML has fostered intelligent systems capable of automating experimental workflows, enabling real-time data analysis, and supporting informed decision-making. Recent advances in health diagnostics, environmental monitoring, and synthetic biology driven by ML are critically examined. This review highlights the transformative potential of ML-enhanced microfluidic systems, offering insights into the future trajectory of this rapidly evolving field.
ISSN:2079-6374
2079-6374
DOI:10.3390/bios14120613