Monitoring of Industrial Machine Using a Novel Blind Feature Extraction Approach
Machinery with several rotating and stationary components tends to produce non-stationary and random vibration signatures due to the fluctuations in the input loads and process defects due to long hours of operation. Traditional heuristics methods are suitable for the detection of fault signatures,...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2021-07, Vol.11 (13), p.5792 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Machinery with several rotating and stationary components tends to produce non-stationary and random vibration signatures due to the fluctuations in the input loads and process defects due to long hours of operation. Traditional heuristics methods are suitable for the detection of fault signatures, however, they become more complicated when the level of uncertainty or randomness exceeds beyond control. A novel methodology to identify these fault signatures using optimal filtering of vibration data is proposed to eliminate any false alarms and is expected to provide a higher probability of correct diagnosis. In this paper, a detailed pipeline of the algorithms are presented along with the results of the investigation that was carried out. These investigations are performed using open-source vibration data published by the NASA prognostics centre. The performance of these algorithms are evaluated based on the ground truth results published by NASA researchers. Based on the performance of these algorithms several parameters are fine-tuned to ensure generalisation and reliable performance. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11135792 |