Center problem for generalized lambda-omega differential systems

$\Lambda$-$\Omega$ differential systems are the real planar polynomial differential equations of degree $m$ of the form $$ \dot{x}=-y(1+\Lambda)+x\Omega,\quad \dot{y}=x(1+\Lambda)+y\Omega, $$ where $\Lambda=\Lambda(x,y)$ and $\Omega=\Omega(x,y)$ are polynomials of degree at most $m-1$ such that $\La...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of differential equations 2018-11, Vol.2018 (184), p.1-23
Hauptverfasser: Jaume Llibre, Rafael Ramirez, Valentin Ramirez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:$\Lambda$-$\Omega$ differential systems are the real planar polynomial differential equations of degree $m$ of the form $$ \dot{x}=-y(1+\Lambda)+x\Omega,\quad \dot{y}=x(1+\Lambda)+y\Omega, $$ where $\Lambda=\Lambda(x,y)$ and $\Omega=\Omega(x,y)$ are polynomials of degree at most $m-1$ such that $\Lambda(0,0)=\Omega(0,0)=0$. A planar vector field with linear type center can be written as a $\Lambda$-$\Omega$ system if and only if the Poincar\'e-Liapunov first integral is of the form $F=\frac{1}{2}(x^2+y^2)(1+O(x,y))$. The main objective of this article is to study the center problem for $\Lambda$-$\Omega$ systems of degree $m$ with $\Lambda=\mu(a_2x-a_1y)$, and $\Omega=a_1x+a_2y+\sum_{j=2}^{m-1}\Omega_j$, where $\mu,\,a_1,\,a_2$ are constants and $\Omega_j= \Omega_j(x,y)$ is a homogenous polynomial of degree $j$, for $j=2,\dots,m-1$. We prove the following results. Assuming that $m=2,3,4,5$ and $$ (\mu+(m-2))(a^2_1+a^2_2)\ne 0 \quad \text{and}\quad \sum_{j=2}^{m-2}\Omega_j\ne 0 $$ the $\Lambda$-$\Omega$ system has a weak center at the origin if and only if these systems after a linear change of variables $(x,y)\to (X,Y)$ are invariant under the transformations $(X,Y,t)\to (-X,Y,-t)$. If $(\mu+(m-2))(a^2_1+a^2_2)=0$ and $\sum_{j=1}^{m-2}\Omega_j=0$ then the origin is a weak center. We observe that the main difficulty in proving this result for $m>6$ is related to the huge computations.
ISSN:1072-6691