Advances in assembled micro- and nanoscale mechanical contact probes

The micro- and nanoscale characterization and mapping of surface properties and surface behaviour is critical to both physical and biological science. Mechanical contact probes are a critical tool for investigating surface and interface science, and have seen greater development and a diversificatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in mechanical engineering 2022-09, Vol.8
Hauptverfasser: Mead, James L., Klauser, Waldemar, von Kleist-Retzow, Fabian, Fatikow, Sergej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The micro- and nanoscale characterization and mapping of surface properties and surface behaviour is critical to both physical and biological science. Mechanical contact probes are a critical tool for investigating surface and interface science, and have seen greater development and a diversification in recent years. In particular, mechanical contact probes that have been fabricated from the bottom-up by the assembly of synthesized nano- or microscale materials can provide enhanced functionality and sensitivity over traditional microcantilevers. This work provides an overview of recent developments in the field of assembled micro- and nanoscale mechanical contact probes, with a specific focus on three probe types: colloidal particle probes with high aspect ratio and a high lateral sensitivity, one-dimensional probes comprising of nanotube and/or nanowire deflection elements, and liquid metal-based probes. For each probe type, the state-of-the-art is reviewed, and their assembly, design, functionality and capabilities are discussed. An outlook on the future direction of probe development and potential applications is also given.
ISSN:2297-3079
2297-3079
DOI:10.3389/fmech.2022.983334