MEASURING LEAF WATER CONTENT USING MULTISPECTRAL TERRESTRIAL LASER SCANNING

Climate change is increasing the amount and intensity of disturbance events, i.e. drought, pest insect outbreaks and fungal pathogens, in forests worldwide. Leaf water content (LWC) is an early indicator of tree stress that can be measured remotely using multispectral terrestrial laser scanning (MS-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2017-10, Vol.XLII-3/W3, p.81-85
Hauptverfasser: Junttila, S., Vastaranta, M., Linnakoski, R., Sugano, J., Kaartinen, H., Kukko, A., Holopainen, M., Hyyppä, H., Hyyppä, J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Climate change is increasing the amount and intensity of disturbance events, i.e. drought, pest insect outbreaks and fungal pathogens, in forests worldwide. Leaf water content (LWC) is an early indicator of tree stress that can be measured remotely using multispectral terrestrial laser scanning (MS-TLS). LWC affects leaf reflectance in the shortwave infrared spectrum which can be used to predict LWC from spatially explicit MS-TLS intensity data. Here, we investigated the relationship between LWC and MS-TLS intensity features at 690 nm, 905 nm and 1550 nm wavelengths with Norway spruce seedlings in greenhouse conditions. We found that a simple ratio of 905 nm and 1550 nm wavelengths was able to explain 84 % of the variation (R2) in LWC with a respective prediction accuracy of 0.0041 g/cm2. Our results showed that MS-TLS can be used to estimate LWC with a reasonable accuracy in environmentally stable conditions.
ISSN:2194-9034
1682-1750
2194-9034
DOI:10.5194/isprs-archives-XLII-3-W3-81-2017