Generalized Weyl-Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States. Part II: The Perma-Concurrence Parameter

This paper deals with separable and entangled qudits | ψ d ⟩ (quantum states in dimension d) constructed from Dicke states made of N = d − 1 qubits. Such qudits present the property to be totally symmetric under the interchange of the N qubits. We discuss the notion of perma-concurrence P d for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry 2019-07, Vol.11 (7), p.875
Hauptverfasser: Daoud, Mohammed, Kibler, Maurice R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with separable and entangled qudits | ψ d ⟩ (quantum states in dimension d) constructed from Dicke states made of N = d − 1 qubits. Such qudits present the property to be totally symmetric under the interchange of the N qubits. We discuss the notion of perma-concurrence P d for the qudit | ψ d ⟩ , introduced by the authors (Entropy 2018, 20, 292), as a parameter for characterizing the entanglement degree of | ψ d ⟩ . For d = 3 , the perma-concurrence P 3 constitutes an alternative to the concurrence C for symmetric two-qubit states. We give several expressions of P d (in terms of matrix permanent and in terms of unit vectors of R 3 pointing on the Bloch sphere) and precise the range of variation of P d (going from separable to maximally entangled states). Numerous examples are presented for P d . Special attention is devoted to states of W type and to maximally entangled states of Bell and Greenberger–Horne–Zeilinger type.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym11070875