Assessment and Calibration of a Low-Cost PM2.5 Sensor Using Machine Learning (HybridLSTM Neural Network): Feasibility Study to Build an Air Quality Monitoring System

Commercially available low-cost air quality sensors have low accuracy. The improved accuracy of low-cost PM2.5 sensors allows the use of low-cost sensor systems to reasonably investigate PM2.5 emissions from industrial activities or to accurately estimate individual exposure to PM2.5. In this work,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmosphere 2021-10, Vol.12 (10), p.1306
Hauptverfasser: Park, Donggeun, Yoo, Geon-Woo, Park, Seong-Ho, Lee, Jong-Hyeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Commercially available low-cost air quality sensors have low accuracy. The improved accuracy of low-cost PM2.5 sensors allows the use of low-cost sensor systems to reasonably investigate PM2.5 emissions from industrial activities or to accurately estimate individual exposure to PM2.5. In this work, we developed a new PM2.5 calibration model (HybridLSTM) by combining a deep neural network (DNN) optimized in calibration problems and a long short-term memory (LSTM) neural network optimized in time-dependent characteristics to improve the performance of conventional calibration algorithms of low-cost PM sensors. The PM2.5 concentrations, temperature and humidity by low-cost sensors and gravimetric-based PM2.5 measuring instrument were sampled for a sufficiently long time. The proposed model was compared with benchmarks (multiple linear regression model (MLR), DNN model) and low-cost sensor results. The gravimetric measurements were used as reference data to evaluate sensor accuracy. For root-mean-square error (RMSE) for PM2.5 concentrations, the proposed model reduced 41–60% of error when compared with the raw data of low-cost sensors, reduced 30–51% of error when compared with the MLR model and reduced 8–40% of error when compared with the MLR model. R2 of HybridLSTM, DNN, MLR and raw data were 93, 90, 80 and 59%, respectively. HybridLSTM showed the state-of-the-art calibration performance for a low-cost PM sensor. In other words, the proposed ML model has state-of-the-art calibration performance among the tested calibration algorithms.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos12101306