Topoisomerases I and III inhibit R-loop formation to prevent unregulated replication in the chromosomal Ter region of Escherichia coli
Type 1A topoisomerases (topos) are the only ubiquitous topos. E. coli has two type 1A topos, topo I (topA) and topo III (topB). Topo I relaxes negative supercoiling in part to inhibit R-loop formation. To grow, topA mutants acquire compensatory mutations, base substitutions in gyrA or gyrB (gyrase)...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2018-09, Vol.14 (9), p.e1007668-e1007668 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Type 1A topoisomerases (topos) are the only ubiquitous topos. E. coli has two type 1A topos, topo I (topA) and topo III (topB). Topo I relaxes negative supercoiling in part to inhibit R-loop formation. To grow, topA mutants acquire compensatory mutations, base substitutions in gyrA or gyrB (gyrase) or amplifications of a DNA region including parC and parE (topo IV). topB mutants grow normally and topo III binds tightly to single-stranded DNA. What functions topo I and III share in vivo and how cells lacking these important enzymes can survive is unclear. Previously, a gyrB(Ts) compensatory mutation was used to construct topA topB null mutants. These mutants form very long filaments and accumulate diffuse DNA, phenotypes that appears to be related to replication from R-loops. Here, next generation sequencing and qPCR for marker frequency analysis were used to further define the functions of type 1A topos. The results reveal the presence of a RNase HI-sensitive origin of replication in the terminus (Ter) region of the chromosome that is more active in topA topB cells than in topA and rnhA (RNase HI) null cells. The S9.6 antibodies specific to DNA:RNA hybrids were used in dot-blot experiments to show the accumulation of R-loops in rnhA, topA and topA topB null cells. Moreover topA topB gyrB(Ts) strains, but not a topA gyrB(Ts) strain, were found to carry a parC parE amplification. When a topA gyrB(Ts) mutant carried a plasmid producing topo IV, topB null transductants did not have parC parE amplifications. Altogether, the data indicate that in E. coli type 1A topos are required to inhibit R-loop formation/accumulation mostly to prevent unregulated replication in Ter, and that they are essential to prevent excess negative supercoiling and its detrimental effects on cell growth and survival. |
---|---|
ISSN: | 1553-7404 1553-7390 1553-7404 |
DOI: | 10.1371/journal.pgen.1007668 |