Consensus Tracking of Fractional-Order Multiagent Systems via Fractional-Order Iterative Learning Control
In this work, the consensus problem of fractional-order multiagent systems with the general linear model of fixed topology is studied. Both distributed PDα-type and Dα-type fractional-order iterative learning control (FOILC) algorithms are proposed. Here, a virtual leader is introduced to generate t...
Gespeichert in:
Veröffentlicht in: | Complexity (New York, N.Y.) N.Y.), 2019, Vol.2019 (2019), p.1-11 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, the consensus problem of fractional-order multiagent systems with the general linear model of fixed topology is studied. Both distributed PDα-type and Dα-type fractional-order iterative learning control (FOILC) algorithms are proposed. Here, a virtual leader is introduced to generate the desired trajectory, fixed communication topology is considered, and only a subset of followers can access the desired trajectory. The convergence conditions are proved using graph theory, fractional calculus, and λ norm theory. The theoretical analysis shows that the output of each agent completely tracks the expected trajectory in a limited time as the iteration number increases for both PDα-type and Dα-type FOILC algorithms. Extensive numerical simulations are given to demonstrate the feasibility and effectiveness. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2019/2192168 |