Evaluating the SSM Model Efficiency in Simulating the Wheat Growth under Water Stress Conditions

IntroductionWheat (Triticum aestivum L.) has become very important as a valuable strategic product with high energy level. The importance of investigating environmental stresses and their role in predicting and evaluating the growth and crops yield is essential. A wide range of plant response to str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Majallah-i āb va khāk 2023-08, Vol.37 (3), p.353-366
Hauptverfasser: S. Shiukhy Soqanloo, M. Mousavi Baygi, B. Torabi, M. Raeini Sarjaz
Format: Artikel
Sprache:per
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:IntroductionWheat (Triticum aestivum L.) has become very important as a valuable strategic product with high energy level. The importance of investigating environmental stresses and their role in predicting and evaluating the growth and crops yield is essential. A wide range of plant response to stress is extended to morphological, physiological and biochemical responses. Considering the rapid advancement in computer model development, plant growth models have emerged as a valuable tool to predict changes in production yield. These growth simulation models effectively incorporate the intricate influences of various factors, such as climate, soil characteristics, and management practices on crop yield. By doing so, they offer a cost-effective and time-efficient alternative to traditional field research methods. Material and MethodsThis research was conducted in the research farm of Varamin province, which has a silty loam soil texture. The latitude and longitude of the region are 35º 32ʹ N and 51º 64ʹ E, respectively. Its height above sea level is 21 meters. According to Demarten classification, Varamin has a temperate humid climate. The long-term mean temperature of Varamin is 11.18 ° C and the total long-term rainfall is 780 mm. In this study, in order to simulate irrigated wheat cv. Mehregan growth under drought stress, an experimental based on completely randomized blocks (CRBD) including: non-stress as control (NS), water stress at booting stage (WSB), water stress at flowering stage (WSF), water stress at milking stage (WSM) and water stress at doughing stage (WSD) with three replications during growth season 2019-2020 was carried out in Varamin, Iran. Crop growth simulation was done using SSM-wheat model. This model simulates growth and yield on a daily basis as a function of weather conditions, soil characteristics and crop management (cultivar, planting date, plant density, irrigation regime). Results and DiscussionBased on the results, the simulation of the phenological stages of irrigated wheat cv. Mehregan under water stress condition using SSM-wheat model showed that there was no difference between observed and simulated values. Summary, the values of day to termination of seed growth (TSG) were observed under non- stress, stress in the booting stage, flowering, milking and doughing of the grains, 222, 219, 219, 221, 221 days, respectively andsimulation values with 224, 221, 220, 221, respectively. However, with their simulation values, there w
ISSN:2008-4757
2423-396X
DOI:10.22067/jsw.2023.80355.1237