Size-Independent Flexure Test Technique for the Mechanical Properties of Geocomposites Reinforced by Unidirectional Fibers
In assessing the bending attributes for geopolymer composites augmented with uni-directional fibers, methodologies aligned with the established American and European standards yield quantifiable values for flexural strength, denoted as σm*, and its corresponding elasticity modulus, E*. Notably, thes...
Gespeichert in:
Veröffentlicht in: | Ceramics 2023-12, Vol.6 (4), p.2053-2069 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In assessing the bending attributes for geopolymer composites augmented with uni-directional fibers, methodologies aligned with the established American and European standards yield quantifiable values for flexural strength, denoted as σm*, and its corresponding elasticity modulus, E*. Notably, these values exhibit a pronounced dependency on the size of the testing parameters. Specifically, within a judicious range of support span L relative to specimen height H, spanning a ratio of 10 to 40, these metrics can vary by a factor between 2 and 4. By conducting evaluations across an extensive array of H/L ratios and adhering to the protocols set for comparable composites with a plastic matrix, it becomes feasible to determine the definitive flexural elastic modulus E and shear modulus G, both of which can be viewed as size-neutral material traits. A parallel methodology can be employed to deduce size-agnostic values for flexural strength, σm. The established linear relationship between the inverse practical value E* (1/E*) and the squared ratio (H/L)2 is acknowledged. However, a congruent 1/σm* relationship has been recently corroborated experimentally, aligning primarily with Tarnopolsky’s theoretical propositions. The parameter T, defined as the inverse gradient of 1/σm* about (H/L)2, is integral to these findings. Furthermore, the significance of the loading displacement rate is underscored, necessitating a tailored consideration for different scenarios. |
---|---|
ISSN: | 2571-6131 2571-6131 |
DOI: | 10.3390/ceramics6040126 |