Robust Visual Tracking with Discrimination Dictionary Learning
It is a challenging issue to deal with kinds of appearance variations in visual tracking. Existing tracking algorithms build appearance models upon target templates. Those models are not robust to significant appearance variations due to factors such as illumination variations, partial occlusions, a...
Gespeichert in:
Veröffentlicht in: | Advances in Multimedia 2018-01, Vol.2018 (2018), p.1-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is a challenging issue to deal with kinds of appearance variations in visual tracking. Existing tracking algorithms build appearance models upon target templates. Those models are not robust to significant appearance variations due to factors such as illumination variations, partial occlusions, and scale variation. In this paper, we propose a robust tracking algorithm with a learnt dictionary to represent target candidates. With the learnt dictionary, a target candidate is represented with a linear combination of dictionary atoms. The discriminative information in learning samples is exploited. In the meantime, the learning processing of dictionaries can learn appearance variations. Based on the learnt dictionary, we can get a more stable representation for target candidates. Additionally, the observation likelihood is evaluated based on both the reconstruct error and dictionary coefficients with l1 constraint. Comprehensive experiments demonstrate the superiority of the proposed tracking algorithm to some state-of-the-art tracking algorithms. |
---|---|
ISSN: | 1687-5680 1687-5699 |
DOI: | 10.1155/2018/7357284 |