SMOS near-real-time soil moisture product: processor overview and first validation results
Measurements of the surface soil moisture (SM) content are important for a wide range of applications. Among them, operational hydrology and numerical weather prediction, for instance, need SM information in near-real-time (NRT), typically not later than 3 h after sensing. The European Space Agency ...
Gespeichert in:
Veröffentlicht in: | Hydrology and earth system sciences 2017-10, Vol.21 (10), p.5201-5216 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Measurements of the surface soil moisture (SM) content are important for a wide range of applications. Among them, operational hydrology and numerical weather prediction, for instance, need SM information in near-real-time (NRT), typically not later than 3 h after sensing. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite is the first mission specifically designed to measure SM from space. The ESA Level 2 SM retrieval algorithm is based on a detailed geophysical modelling and cannot provide SM in NRT. This paper presents the new ESA SMOS NRT SM product. It uses a neural network (NN) to provide SM in NRT. The NN inputs are SMOS brightness temperatures for horizontal and vertical polarizations and incidence angles from 30 to 45°. In addition, the NN uses surface soil temperature from the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS). The NN was trained on SMOS Level 2 (L2) SM. The swath of the NRT SM retrieval is somewhat narrower (∼ 915 km) than that of the L2 SM dataset (∼ 1150 km), which implies a slightly lower revisit time. The new SMOS NRT SM product was compared to the SMOS Level 2 SM product. The NRT SM data show a standard deviation of the difference with respect to the L2 data of |
---|---|
ISSN: | 1607-7938 1027-5606 1607-7938 |
DOI: | 10.5194/hess-21-5201-2017 |