Electrically Tunable Solution-Processed Transparent Conductive Thin Films Based on Colloidally Dispersed ITO@Ag Composite Ink
Silver (Ag) introduced colloidal Sn-doped In2O3 (ITO) ink for transparent conductive electrodes (TCEs) was prepared to overcome the limitation of colloidally prepared thin film; low density thin film, high resistance. ITO@Ag colloid ink was made by controlling the weight ratio of ITO and Ag nanopart...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2022-06, Vol.12 (12), p.2060 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Silver (Ag) introduced colloidal Sn-doped In2O3 (ITO) ink for transparent conductive electrodes (TCEs) was prepared to overcome the limitation of colloidally prepared thin film; low density thin film, high resistance. ITO@Ag colloid ink was made by controlling the weight ratio of ITO and Ag nanoparticles through ball-milling and fabricated using spin coating. These films were dried at 220 °C and heat-treated at 450−750 °C in an air atmosphere to pyrolyze the organic ligand attached to the nanoparticles. All thin films showed high crystallinity. As the thermal treatment temperature increased, films showed a cracked surface, but as the weight percentage of silver increased, a flattened and smooth surface appeared, caused by the metallic silver filling the gap between the nano-particles. This worked as a bridge to allow electrical conduction, which decreases the resistivity over an order of magnitude, from 309 to 0.396, and 0.107 Ω·cm for the ITO-220 °C, ITO-750 °C, and ITO@Ag (7.5 wt.%)-750 °C, respectively. These films also exhibited >90% optical transparency. Lowered resistivity is caused due to the inclusion of silver, providing a sufficient number of charge carriers. Furthermore, the work function difference between ITO and silver builds an ohmic junction, allowing fluent electrical flow without any barrier. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano12122060 |