Operational relevance of resource theories of quantum measurements
For any resource theory it is essential to identify tasks for which resource objects offer advantage over free objects. We show that this identification can always be accomplished for resource theories of quantum measurements in which free objects form a convex subset of measurements on a given Hilb...
Gespeichert in:
Veröffentlicht in: | Quantum (Vienna, Austria) Austria), 2019-04, Vol.3, p.133, Article 133 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any resource theory it is essential to identify tasks for which resource objects offer advantage over free objects. We show that this identification can always be accomplished for resource theories of quantum measurements in which free objects form a convex subset of measurements on a given Hilbert space. To this aim we prove that every resourceful measurement offers advantage for some quantum state discrimination task. Moreover, we give an operational interpretation of robustness, which quantifies the minimal amount of noise that must be added to a measurement to make it free. Specifically, we show that this geometric quantity is related to the maximal relative advantage that a resourceful measurement offers in a class of minimal-error state discrimination (MESD) problems. Finally, we apply our results to two classes of free measurements: incoherent measurements (measurements that are diagonal in the fixed basis) and separable measurements (measurements whose effects are separable operators). For both of these scenarios we find, in the asymptotic setting in which the dimension or the number of particles increase to infinity, the maximal relative advantage that resourceful measurements offer for state discrimination tasks. |
---|---|
ISSN: | 2521-327X 2521-327X |
DOI: | 10.22331/q-2019-04-26-133 |