On The Study of Edge Monophonic Vertex Covering Number

For a connected graph G of order n ≥ 2, a set S of vertices of G is an edge monophonic vertex cover of G if S is both an edge monophonic set and a vertex covering set of G. The minimum cardinality of an edge monophonic vertex cover of G is called the edge monophonic vertex covering number of G and i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ratio mathematica 2022-12, Vol.44, p.197-204
Hauptverfasser: KA Francis Jude Shini, S Durai Raj, Xaviour, X Lenin, Anto, A M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a connected graph G of order n ≥ 2, a set S of vertices of G is an edge monophonic vertex cover of G if S is both an edge monophonic set and a vertex covering set of G. The minimum cardinality of an edge monophonic vertex cover of G is called the edge monophonic vertex covering number of G and is denoted by . Any edge monophonic vertex cover of cardinality is a -set of G. Some general properties satisfied by edge monophonic vertex cover are studied.
ISSN:1592-7415
2282-8214
DOI:10.23755/rm.v44i0.907