On The Study of Edge Monophonic Vertex Covering Number
For a connected graph G of order n ≥ 2, a set S of vertices of G is an edge monophonic vertex cover of G if S is both an edge monophonic set and a vertex covering set of G. The minimum cardinality of an edge monophonic vertex cover of G is called the edge monophonic vertex covering number of G and i...
Gespeichert in:
Veröffentlicht in: | Ratio mathematica 2022-12, Vol.44, p.197-204 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a connected graph G of order n ≥ 2, a set S of vertices of G is an edge monophonic vertex cover of G if S is both an edge monophonic set and a vertex covering set of G. The minimum cardinality of an edge monophonic vertex cover of G is called the edge monophonic vertex covering number of G and is denoted by . Any edge monophonic vertex cover of cardinality is a -set of G. Some general properties satisfied by edge monophonic vertex cover are studied. |
---|---|
ISSN: | 1592-7415 2282-8214 |
DOI: | 10.23755/rm.v44i0.907 |