Accelerated proton dissociation in an excited state induces superacidic microenvironments around graphene quantum dots
Investigating proton transport at the interface in an excited state facilitates the mechanistic investigation and utilization of nanomaterials. However, there is a lack of suitable tools for in-situ and interfacial analysis. Here we addresses this gap by in-situ observing the proton transport of gra...
Gespeichert in:
Veröffentlicht in: | Nature communications 2024-08, Vol.15 (1), p.6634-13, Article 6634 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Investigating proton transport at the interface in an excited state facilitates the mechanistic investigation and utilization of nanomaterials. However, there is a lack of suitable tools for in-situ and interfacial analysis. Here we addresses this gap by in-situ observing the proton transport of graphene quantum dots (GQDs) in an excited state through reduction of magnetic resonance relaxation time. Experimental results, utilizing 0.1 mT ultra-low-field nuclear magnetic resonance relaxometry compatible with a light source, reveal the light-induced proton dissociation and acidity of GQDs’ microenvironment in the excited state (Hammett acidity function: –13.40). Theoretical calculations demonstrate significant acidity enhancement in –OH functionalized GQDs with light induction (
p
K
a
*
= –4.62, stronger than that of H
2
SO
4
). Simulations highlight the contributions of edge and phenolic –OH groups to proton dissociation. The light-induced superacidic microenvironment of GQDs benefits functionalization and improves the catalytic performances of GQDs. Importantly, this work advances the understanding of interfacial properties of light-induced
sp
2
–
sp
3
carbon nanostructure and provides a valuable tool for exploring catalyst interfaces in photocatalysis.
Understanding interfacial proton transport in an excited state is crucial for catalytic and diagnostic applications of nanomaterials. Here, the authors combine ultra-low-field NMR relaxometry with a light source to study the light-induced proton dissociation of graphene quantum dots. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-50982-x |