Study of the chemostat model with non-monotonic growth under random disturbances on the removal rate

We revisit the chemostat model with Haldane growth function, here subject to bounded random disturbances on the input flow rate, as often met in biotechnological or waste-water industry. We prove existence and uniqueness of global positive solution of the random dynamics and existence of absorbing a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Biosciences and Engineering 2020-10, Vol.17 (6), p.7480-7501
Hauptverfasser: Caraballo, Tomás, Colucci, Renato, López-de-la-Cruz, Javier, Rapaport, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We revisit the chemostat model with Haldane growth function, here subject to bounded random disturbances on the input flow rate, as often met in biotechnological or waste-water industry. We prove existence and uniqueness of global positive solution of the random dynamics and existence of absorbing and attracting sets that are independent of the realizations of the noise. We study the long-time behavior of the random dynamics in terms of attracting sets, and provide first conditions under which biomass extinction cannot be avoided. We prove conditions for weak and strong persistence of the microbial species and provide lower bounds for the biomass concentration, as a relevant information for practitioners. The theoretical results are illustrated with numerical simulations.
ISSN:1551-0018
1547-1063
1551-0018
DOI:10.3934/mbe.2020382