The Detection of the Pipe Crack Utilizing the Operational Modal Strain Identified from Fiber Bragg Grating

The small and light-weight pipeline is widely used in hydraulic system for aerospace engineering. The crack is one of the most common failures in the pipelines so that its incipient detection can further avoid the catastrophic damage of the piping system. The electrical and piezoelectric sensors are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2019-06, Vol.19 (11), p.2556
Hauptverfasser: Wang, Zechao, Liu, Mingyao, Qu, Yongzhi, Wei, Qin, Zhou, Zude, Tan, Yuegang, Hong, Liu, Song, Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The small and light-weight pipeline is widely used in hydraulic system for aerospace engineering. The crack is one of the most common failures in the pipelines so that its incipient detection can further avoid the catastrophic damage of the piping system. The electrical and piezoelectric sensors are conventionally used for the structural health monitoring (SHM), while these are not suitable for the cascaded pipelines in harsh environment because the added mass will change the modal characteristics of the cascaded pipelines. The Fiber Bragg Grating (FBG) sensor with light-weight, multiplexed, and anti-electromagnetic interference properties, are employed to obtain the modal strain transmissibility with a novel diagram of the operational modal analysis (OMA). Based on the OMA an enhanced damage indicator is proposed to detect the crack. After going through analytical modeling, finite element modeling (FEM) and its corresponding experiments, it is concluded that the presented method is effective and accurate to detect and locate the crack.
ISSN:1424-8220
1424-8220
DOI:10.3390/s19112556