An algorithm for constructing integral row stochastic matrices

Let  $\textbf{M}_{n}$ be  the set of all $n$-by-$n$ real  matrices, and let  $\mathbb{R}^{n}$ be  the set of all $n$-by-$1$ real (column) vectors. An $n$-by-$n$ matrix $R=[r_{ij}]$ with nonnegative entries is called row stochastic, if $\sum_{k=1}^{n} r_{ik}$ is equal to 1 for all $i$, $(1\leq i \leq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Mahani Mathematical Research Center 2022-01, Vol.11 (1), p.69-77
1. Verfasser: Asma Ilkhanizadeh Manesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let  $\textbf{M}_{n}$ be  the set of all $n$-by-$n$ real  matrices, and let  $\mathbb{R}^{n}$ be  the set of all $n$-by-$1$ real (column) vectors. An $n$-by-$n$ matrix $R=[r_{ij}]$ with nonnegative entries is called row stochastic, if $\sum_{k=1}^{n} r_{ik}$ is equal to 1 for all $i$, $(1\leq i \leq n)$. In fact, $Re=e$, where $e=(1,\ldots,1)^t\in \mathbb{R}^n$.  A matrix $R\in \textbf{M}_{n}$  is called integral row stochastic, if each row has exactly one nonzero entry, $+1$, and other entries are zero.  In the present paper,  we provide an algorithm for constructing integral row stochastic matrices, and also we show the relationship between this algorithm and majorization theory.
ISSN:2251-7952
2645-4505
DOI:10.22103/jmmrc.2021.13883.1089