RETRACTED: Multicomponent siRNA/miRNA-loaded modified mesoporous silica nanoparticles targeted bladder cancer for a highly effective combination therapy

Bladder cancer is one of the concerning urological malignant diseases in the world, which has a clinical need for effective targeted therapy. The development of nanotechnology-based gene delivery to bladder tumor sites is an effective strategy for targeted cancer therapy with low/no toxicity. With t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in bioengineering and biotechnology 2022-08, Vol.10
Hauptverfasser: Shahidi, Maryamsadat, Abazari, Omid, Dayati, Parisa, Bakhshi, Ali, Zavarreza, Javad, Modarresi, Mohammad Hossein, Haghiralsadat, Fateme, Rahmanian, Mehdi, Naghib, Seyed Morteza, Tofighi, Davood
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bladder cancer is one of the concerning urological malignant diseases in the world, which has a clinical need for effective targeted therapy. The development of nanotechnology-based gene delivery to bladder tumor sites is an effective strategy for targeted cancer therapy with low/no toxicity. With this view, in the present work, the mesoporous silica nanoparticles (MSNs) modified with c(RGDfK)-PLGA-PEG [c(RGDfK)-MSN NPs] were constructed for co-delivery of miR-34a and siPD-L1 within bladder cancer cells and tissues. Our findings showed that miR-34a is downregulated while PD-L1 is up-regulated in cell lines and animal studies. This nano-carrier is biocompatible in the serum environment and effectively protects miR-34a and siPD-L1 against serum degradation. However, we showed that c(RGDfK)-MSN NPs could simultaneously downregulate PD-L1 expression and up-regulate miR-34a in the T24 cells and T24 mice model and enhance anti-tumor effects both in vivo and in vitro . In conclusion, these findings presented new suggestions for improving targeted therapeutic strategies with specified molecular objectives for bladder cancer treatment.
ISSN:2296-4185
2296-4185
DOI:10.3389/fbioe.2022.949704