Effect of plasma polyunsaturated fatty acid levels on leukocyte telomere lengths in the Singaporean Chinese population

Shorter telomere length (TL) has been associated with poor health behaviors, increased risks of chronic diseases and early mortality. Excessive shortening of telomere is a marker of accelerated aging and can be influenced by oxidative stress and nutritional deficiency. Plasma n6:n3 polyunsaturated f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrition journal 2020-10, Vol.19 (1), p.119-9, Article 119
Hauptverfasser: Chang, Xuling, Dorajoo, Rajkumar, Sun, Ye, Wang, Ling, Ong, Choon Nam, Liu, Jianjun, Khor, Chiea Chuen, Yuan, Jian-Min, Koh, Woon Puay, Friedlander, Yechiel, Heng, Chew-Kiat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shorter telomere length (TL) has been associated with poor health behaviors, increased risks of chronic diseases and early mortality. Excessive shortening of telomere is a marker of accelerated aging and can be influenced by oxidative stress and nutritional deficiency. Plasma n6:n3 polyunsaturated fatty acid (PUFA) ratio may impact cell aging. Increased dietary intake of marine n-3 PUFA is associated with reduced telomere attrition. However, the effect of plasma PUFA on leukocyte telomere length (LTL) and its interaction with genetic variants are not well established. A nested coronary artery disease (CAD) case-control study comprising 711 cases and 638 controls was conducted within the Singapore Chinese Health Study (SCHS). Samples genotyped with the Illumina ZhongHua-8 array. Plasma n-3 and n-6 PUFA were quantified using mass spectrometry (MS). LTL was measured with quantitative PCR method. Linear regression was used to test the association between PUFA and LTL. The interaction between plasma PUFAs and genetic variants was assessed by introducing an additional term (PUFA×genetic variant) in the regression model. Analysis was carried out in cases and controls separately and subsequently meta-analyzed using the inverse-variance weighted method. We further assessed the association of PUFA and LTL with CAD risk by Cox Proportional-Hazards model and whether the effect of PUFA on CAD was mediated through LTL by using structural equation modeling. Higher n6:n3 ratio was significantly associated with shorter LTL (p = 0.018) and increased CAD risk (p = 0.005). These associations were mainly driven by elevated plasma total n-3 PUFAs, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (p 
ISSN:1475-2891
1475-2891
DOI:10.1186/s12937-020-00626-9