The population genetic structure of vectors and our understanding of disease epidemiology
Understanding and predicting disease epidemiology relies on clear knowledge about the basic biology of the organisms involved. Despite the key role that arthropod vectors play in disease dynamics and detailed mechanistic work on the vectorpathogen interface, little information is often available abo...
Gespeichert in:
Veröffentlicht in: | Parasite 2008-09, Vol.15 (3), p.444-448 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Understanding and predicting disease epidemiology relies on clear knowledge about the basic biology of the organisms involved. Despite the key role that arthropod vectors play in disease dynamics and detailed mechanistic work on the vectorpathogen interface, little information is often available about how these populations function under natural conditions. Population genetic studies can help fill this void by providing information about the taxonomic status of species, the spatial limits of populations, and the nature of gene flow among populations. Here, I briefly review different types of population genetic structure and some recent examples of where this information has provided key elements for understanding pathogen transmission in tick-borne systems. |
---|---|
ISSN: | 1252-607X 1776-1042 |
DOI: | 10.1051/parasite/2008153444 |