On the convergence of multidimensional S-fractions with independent variables
The paper investigates the convergence problem of a special class of branched continued fractions, i.e. the multidimensional S-fractions with independent variables, consisting of \[\sum_{i_1=1}^N\frac{c_{i(1)}z_{i_1}}{1}{\atop+}\sum_{i_2=1}^{i_1}\frac{c_{i(2)}z_{i_2}}{1}{\atop+} \sum_{i_3=1}^{i_2}\f...
Gespeichert in:
Veröffentlicht in: | Karpats'kì matematinì publìkacìï 2020-01, Vol.12 (2), p.353-359 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper investigates the convergence problem of a special class of branched continued fractions, i.e. the multidimensional S-fractions with independent variables, consisting of \[\sum_{i_1=1}^N\frac{c_{i(1)}z_{i_1}}{1}{\atop+}\sum_{i_2=1}^{i_1}\frac{c_{i(2)}z_{i_2}}{1}{\atop+} \sum_{i_3=1}^{i_2}\frac{c_{i(3)}z_{i_3}}{1}{\atop+}\cdots,\] which are multidimensional generalizations of S-fractions (Stieltjes fractions). These branched continued fractions are used, in particular, for approximation of the analytic functions of several variables given by multiple power series. For multidimensional S-fractions with independent variables we have established a convergence criterion in the domain \[H=\left\{{\bf{z}}=(z_1,z_2,\ldots,z_N)\in\mathbb{C}^N:\;|\arg(z_k+1)| |
---|---|
ISSN: | 2075-9827 2313-0210 |
DOI: | 10.15330/cmp.12.2.353-359 |