Seven Études on dynamical Keldysh model

We present a comprehensive pedagogical discussion of a family of models describing the propagation of a single particle in a multicomponent non-Markovian Gaussian random field. We report some exact results for single-particle Green’s functions, self-energy, vertex part and T-matrix. These results ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SciPost physics lecture notes 2022-12, p.65, Article 65
Hauptverfasser: Efremov, Dimitri, Kiselev, Mikhail
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a comprehensive pedagogical discussion of a family of models describing the propagation of a single particle in a multicomponent non-Markovian Gaussian random field. We report some exact results for single-particle Green’s functions, self-energy, vertex part and T-matrix. These results are based on a closed form solution of the Dyson equation combined with the Ward identity. Analytical properties of the solution are discussed. Further we describe the combinatorics of the Feynman diagrams for the Green’s function and the skeleton diagrams for the self-energy and vertex, using recurrence relations between the Taylor expansion coefficients of the self-energy. Asymptotically exact equations for the number of skeleton diagrams in the limit of large N N are derived. Finally, we consider possible realizations of a multicomponent Gaussian random potential in quantum transport via complex quantum dot experiments.
ISSN:2590-1990
2590-1990
DOI:10.21468/SciPostPhysLectNotes.65