Introduction to Competing Risk Model in the Epidemiological Research
Background and aims: Chronic kidney disease (CKD) is a public health challenge worldwide, with adverse consequences of kidney failure, cardiovascular disease (CVD), and premature death. The CKD leads to the end-stage of renal disease (ESRD) if late/not diagnosed. Competing risk modeling is a major i...
Gespeichert in:
Veröffentlicht in: | International journal of epidemiologic research 2018-09, Vol.5 (3), p.98-102 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background and aims: Chronic kidney disease (CKD) is a public health challenge worldwide, with adverse consequences of kidney failure, cardiovascular disease (CVD), and premature death. The CKD leads to the end-stage of renal disease (ESRD) if late/not diagnosed. Competing risk modeling is a major issue in epidemiology research. In epidemiological study, sometimes, inappropriate methods (i.e. Kaplan-Meier method) have been used to estimate probabilities for an event of interest in the presence of competing risks. In these situations, competing risk analysis is preferred to other models in survival analysis studies. The purpose of this study was to describe the bias resulting from the use of standard survival analysis to estimate the survival of a patient with ESRD and to provide alternate statistical methods considering the competing risk. Methods: In this retrospective study, 359 patients referred to the hemodialysis department of Shahid Ayatollah Ashrafi Esfahani hospital in Tehran, and underwent continuous hemodialysis for at least three months. Data were collected through patient’s medical history contained in the records (during 2011-2017). To evaluate the effects of research factors on the outcome, cause-specific hazard model and competing risk models were fitted. The data were analyzed using Stata (a general-purpose statistical software package) software, version 14 and SPSS software, version 21, through descriptive and analytical statistics. Results: The median duration of follow-up was 3.12 years and mean age at ESRD diagnosis was 66.47 years old. Each year increase in age was associated with a 98% increase in hazard of death. In this study, statistical analysis based on the competing risk model showed that age, age of diagnosis, level of education (under diploma), and body mass index (BMI) were significantly associated with death (hazard ratio [HR]=0.98, P |
---|---|
ISSN: | 2383-4366 2383-4366 |
DOI: | 10.15171/ijer.2018.21 |