The effect of coating chitosan from cuttlefish bone (Sepia Sp.) on the surface of orthodontic mini-screw

Peri-implantitis is a significant complication resulting from the failure of orthodontic mini-screws. Recent strategies to address this issue include the application of natural antibacterial coatings to prevent bacterial colonization. Notably, cuttlefish (Sepia sp.) bones are rich in chitosan, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:OpenNano 2024-11, Vol.20, p.100217, Article 100217
Hauptverfasser: Mansjur, Karima Qurnia, Attaya, Nurnabilla Syfadewi, Erwansyah, Eka, Pawinru, Ardiansyah S, Nasir, Mansjur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Peri-implantitis is a significant complication resulting from the failure of orthodontic mini-screws. Recent strategies to address this issue include the application of natural antibacterial coatings to prevent bacterial colonization. Notably, cuttlefish (Sepia sp.) bones are rich in chitosan, which is recognized for its antibacterial effectiveness and biocompatibility. To evaluate the effects of a chitosan coating derived from cuttlefish bone (Sepia sp.) on mini-screws against Aggregatibacter actinomycetemcomitans bacteria frequently linked to peri‑implantitis. The surface functional groups, phase composition, and crystal morphology of chitosan were analyzed using conventional analytic techniques alongside energy-dispersive X-ray analysis. These prepared were tested for antibacterial activity against A. actinomycetemcomitans by disk diffusion assay; minimum bactericidal concentration (MBC) and minimum inhibitory concentration (MIC) were determined. Stainless steel mini-screws were coated with chitosan, and their surfaces were characterized using scanning electron microscopy (SEM). The investigation revealed that chitosan exhibited a MIC value of 8 ppm against A. actinomycetemcomitans with MBCs recorded at 16 ppm. Zones of inhibition varied based on concentration; notably, concentrations at 0.4 %, 0.6 %, and 0.8 % produced zones averaging 16.17 ± 1.64 mm collectively while increasing to a mean zone size of 20.99 ± 3.63 mm at the highest tested concentration (0.8 %). SEM analyses further confirmed the successful adhesion of the chitosan compound onto immersed mini-screw surfaces. The prepared chitosan from cuttlefish bone (Sepia sp.) has antibacterial activity against the bacteria A. actinomycetemcomitans in vitro and can successfully coat SS mini-screws to enhance their efficiency.
ISSN:2352-9520
2352-9520
DOI:10.1016/j.onano.2024.100217