On New Extensions of Hermite-Hadamard Inequalities for Generalized Fractional Integrals

In this paper, we establish some Trapezoid and Midpoint type inequalities for generalized fractional integrals by utilizing the functions whose second derivatives are bounded . We also give some new inequalities for $k$-Riemann-Liouville fractional integrals as special cases of our main results. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sahand communications in mathematical analysis 2021-12, Vol.18 (1), p.73-88
Hauptverfasser: Huseyin Budak, Ebru Pehlivan, Pınar Kosem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we establish some Trapezoid and Midpoint type inequalities for generalized fractional integrals by utilizing the functions whose second derivatives are bounded . We also give some new inequalities for $k$-Riemann-Liouville fractional integrals as special cases of our main results. We also obtain some Hermite-Hadamard type inequalities by using the condition $f^{\prime }(a+b-x)\geq f^{\prime }(x)$ for all $x\in \left[ a,\frac{a+b}{2}\right] $ instead of convexity.
ISSN:2322-5807
2423-3900
DOI:10.22130/scma.2020.121963.759