Bifunctional P-Containing RuO2 Catalysts Prepared from Surplus Ru Co-Ordination Complexes and Applied to Zn/Air Batteries

An innovative synthetic route that involves the thermal treatment of selected Ru co−ordination complexes was used to prepare RuO2-based materials with catalytic activity for oxygen reduction (ORR) and oxygen evolution (OER) reactions. Extensive characterization confirmed the presence of Ru metal and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2023-01, Vol.13 (1), p.115
Hauptverfasser: Lorca, Sebastián, Torres, Javier, Serrano, José L., Pérez, José, Abad, José, Santos, Florencio, Fernández Romero, Antonio J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An innovative synthetic route that involves the thermal treatment of selected Ru co−ordination complexes was used to prepare RuO2-based materials with catalytic activity for oxygen reduction (ORR) and oxygen evolution (OER) reactions. Extensive characterization confirmed the presence of Ru metal and RuP3O9 in the materials, with an improved electrocatalytic performance obtained from calcinated [(RuCl2(PPh3)3]. A mechanistic approach for the obtention of such singular blends and for the synergetic contribution of these three species to electrocatalysis is suggested. Catalysts added to carbon−based electrodes were also tested in all−solid and flooded alkaline Zn/air batteries. The former displayed a specific discharge capacity of 10.5 A h g−1 at 250 mA g−1 and a power density of 4.4 kW kg−1 cm−2. Besides, more than 800 discharge/charge cycles were reached in the flooded alkaline Zn/air battery
ISSN:2079-4991
2079-4991
DOI:10.3390/nano13010115