Human alveolar epithelial cells type II are capable of TGFβ-dependent epithelial-mesenchymal-transition and collagen-synthesis
The origin of collagen-producing cells in lung fibrosis is unclear. The involvement of embryonic signaling pathways has been acknowledged and trans-differentiation of epithelial cells is discussed critically. The work presented here investigates the role of TGFB in cytoskeleton remodeling and the ex...
Gespeichert in:
Veröffentlicht in: | Respiratory research 2018-07, Vol.19 (1), p.138-138, Article 138 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The origin of collagen-producing cells in lung fibrosis is unclear. The involvement of embryonic signaling pathways has been acknowledged and trans-differentiation of epithelial cells is discussed critically. The work presented here investigates the role of TGFB in cytoskeleton remodeling and the expression of Epithelial-Mesenchymal-Transition markers by Alveolar Epithelial Cells Type II and tests the hypothesis if human alveolar epithelial cells are capable of trans-differentiation and production of pro-fibrotic collagen.
Primary human alveolar epithelial cells type II were extracted from donor tissues and stimulated with TGFβ and a TGFβ-inhibitor. Transcriptome and pathway analyses as well as validation of results on protein level were conducted.
A TGFβ-responsive fingerprint was found and investigated for mutual interactions. Interaction modules exhibited enrichment of genes that favor actin cytoskeleton remodeling, differentiation processes and collagen metabolism. Cross-validation of the TGFβ-responsive fingerprint in an independent IPF dataset revealed overlap of genes and supported the direction of regulated genes and TGFβ-specificity.
Primary human alveolar epithelial cells type II seem undergo a TGFβ-dependent phenotypic change, exhibit differential expression of EMT markers in vitro and acquire the potential to produce collagen. |
---|---|
ISSN: | 1465-993X 1465-9921 1465-993X 1465-9921 |
DOI: | 10.1186/s12931-018-0841-9 |