Machine Learning for Breast Cancer Detection with Dual-Port Textile UWB MIMO Bra-Tenna System

A wearable textile bra-tenna system based on dual-polarization sensors for breast cancer (BC) detection is presented in this paper. The core concept behind our work is to investigate which type of polarization is most effective for BC detection, using the combination of orthogonal polarization signa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information (Basel) 2024-08, Vol.15 (8), p.467
Hauptverfasser: Elnaggar, Azza H., El-Hameed, Anwer S. Abd, Yakout, Mohamed A., Areed, Nihal F. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A wearable textile bra-tenna system based on dual-polarization sensors for breast cancer (BC) detection is presented in this paper. The core concept behind our work is to investigate which type of polarization is most effective for BC detection, using the combination of orthogonal polarization signals with machine learning (ML) techniques to enhance detection accuracy. The bra-tenna sensors have a bandwidth ranging from 2–12 GHz. To complement the proposed system, detection based on machine learning algorithms (MLAs) is developed and tested to enhance its functionality. Using scattered signals at different polarizations, the bra-tenna system uses MLAs to predict BC in its early stages. Classification techniques are highly effective for data classification, especially in the biomedical field. Two scenarios are considered: Scenario 1, where the system detects a tumor or non-tumor, and Scenario 2, where the system detects three classes of one, two, and non-tumors. This confirms that MLAs can detect tumors as small as 10 mm. ML techniques, including eight algorithms such as the Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Methods (GBMs), Decision Tree (DT) classifier, Ada Boost (AD), CatBoost, Extreme Gradient Boosting (XG Boost), and Logistic Regression (LR), are applied to this balanced dataset. For optimal analysis of the BC, a performance evaluation is performed. Notably, SVM achieves outstanding performance in both scenarios, with metrics such as its F1 score, recall, accuracy, receiver operating characteristic (ROC) curve, area under the ROC curve (AUC), and precision all exceeding 90%, helping doctors to effectively investigate BC. Furthermore, the Horizontal-Horizontal (HH) sensor configuration achieved the highest accuracy of 98% and 99% for SVMs in the two scenarios, respectively.
ISSN:2078-2489
2078-2489
DOI:10.3390/info15080467