Evaluation of the Ultimate Strength of the Ultra-High-Performance Fiber-Reinforced Concrete Beams

Evaluation of the ultimate strength for the UHPFRC (ultra-high-performance fiber-reinforced concrete) flexural members was conducted. In this study, an experimental program about UHPFRC beams was conducted with the effect of fiber volume fraction, shear span to depth ratio, and compressive strength...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-04, Vol.11 (7), p.2951
Hauptverfasser: Bae, Baek-Il, Lee, Moon-Sung, Choi, Chang-Sik, Jung, Hyung-Suk, Choi, Hyun-Ki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evaluation of the ultimate strength for the UHPFRC (ultra-high-performance fiber-reinforced concrete) flexural members was conducted. In this study, an experimental program about UHPFRC beams was conducted with the effect of fiber volume fraction, shear span to depth ratio, and compressive strength of matrix as the main variables. Among them, it was found that fiber volume fraction was the variable that had the greatest influence on the ultimate strength. The inclusion of 2% volume fraction steel fiber increases the shear and flexural strength of UHPFRC beams significantly. In particular, steel fiber inclusion changed the mode of failure of beams from diagonal shear failure into flexural failure. For the classification of failure patterns, the ultimate flexural strength and shear strength of UHPFRC members were evaluated using the current design code and UHPC guidelines. Flexural ultimate strength was affected by the size and shape of the stress block and consideration of the matrix’s tensile strength. For the accurate shear strength prediction of UHPFRC beams, the tensile strength of the high strength matrix and the effect of steel fiber should be considered.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11072951