Multiple Functions of the Essential Gene PpV in Drosophila Early Development

Abstract Protein phosphatase V (PpV) encodes the Drosophila homolog of the evolutionarily conserved Protein Phosphatase 6 (PP6). The physiological and developmental functions of PpV/PP6 have not been well characterized due to lack of a genetically defined mutant. Here, we identified a PpV non-sense...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:G3 : genes - genomes - genetics 2019-11, Vol.9 (11), p.3583-3593
Hauptverfasser: Liu, Boyang, Sung, Hung-wei, Großhans, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Protein phosphatase V (PpV) encodes the Drosophila homolog of the evolutionarily conserved Protein Phosphatase 6 (PP6). The physiological and developmental functions of PpV/PP6 have not been well characterized due to lack of a genetically defined mutant. Here, we identified a PpV non-sense mutation and describe multiple mutant phenotypes in oogenesis and early embryogenesis. Specifically, we found that the defects in chromosome segregation during nuclear cycles are related to AuroraA function, which is consistent with the interaction of PP6 and AuroraA in mammalian cells. Surprisingly, we also identified a PpV function specifically in blastoderm cell cycle but not in cell proliferation in the follicle epithelium or larval wing imaginal discs. Embryos from PpV germline clones frequently undergo an extra nuclear division cycle. By epistasis analysis, we found that PpV functions in parallel with tribbles, but independently of auroraA for the remodeling of the nuclear cycles. Taken together, this study reports novel developmental functions of PpV and provides a framework for further genetic analysis under physiological conditions.
ISSN:2160-1836
2160-1836
DOI:10.1534/g3.119.400662