Rational Construction of Hierarchically Porous Fe–Co/N-Doped Carbon/rGO Composites for Broadband Microwave Absorption
Highlights Hierarchically porous Fe–Co/N-doped carbon/rGO (Fe–Co/NC/rGO) composites were successfully prepared. Macropores, mesopores, and micropores coexisted in the composites. Hierarchically porous Fe–Co/NC/rGO showed effective bandwidth of 9.29 GHz. Developing lightweight and broadband microwave...
Gespeichert in:
Veröffentlicht in: | Nano-Micro Letters 2019-09, Vol.11 (1), p.76-16, Article 76 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highlights
Hierarchically porous Fe–Co/N-doped carbon/rGO (Fe–Co/NC/rGO) composites were successfully prepared. Macropores, mesopores, and micropores coexisted in the composites.
Hierarchically porous Fe–Co/NC/rGO showed effective bandwidth of 9.29 GHz.
Developing lightweight and broadband microwave absorbers for dealing with serious electromagnetic radiation pollution is a great challenge. Here, a novel Fe–Co/N-doped carbon/reduced graphene oxide (Fe–Co/NC/rGO) composite with hierarchically porous structure was designed and synthetized by in situ growth of Fe-doped Co-based metal organic frameworks (Co-MOF) on the sheets of porous cocoon-like rGO followed by calcination. The Fe–Co/NC composites are homogeneously distributed on the sheets of porous rGO. The Fe–Co/NC/rGO composite with multiple components (Fe/Co/NC/rGO) causes magnetic loss, dielectric loss, resistance loss, interfacial polarization, and good impedance matching. The hierarchically porous structure of the Fe–Co/NC/rGO enhances the multiple reflections and scattering of microwaves. Compared with the Co/NC and Fe–Co/NC, the hierarchically porous Fe–Co/NC/rGO composite exhibits much better microwave absorption performances due to the rational composition and porous structural design. Its minimum reflection loss (RL
min
) reaches − 43.26 dB at 11.28 GHz with a thickness of 2.5 mm, and the effective absorption frequency (RL ≤ − 10 dB) is up to 9.12 GHz (8.88–18 GHz) with the same thickness of 2.5 mm. Moreover, the widest effective bandwidth of 9.29 GHz occurs at a thickness of 2.63 mm. This work provides a lightweight and broadband microwave absorbing material while offering a new idea to design excellent microwave absorbers with multicomponent and hierarchically porous structures. |
---|---|
ISSN: | 2311-6706 2150-5551 |
DOI: | 10.1007/s40820-019-0307-8 |