Kinetic and Mechanistic Studies of Native Chemical Ligation with Phenyl α‑Selenoester Peptides

Native chemical ligation (NCL) ligates two unprotected peptides in an aqueous buffer. One of the fragments features a C-terminal α-thioester functional group, and the second bears an N-terminal cysteine. The reaction mechanism depicts two steps: an intermolecular thiol–thioester exchange resulting i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JACS Au 2024-11, Vol.4 (11), p.4374-4382
Hauptverfasser: Sánchez-Campillo, Iván, Blanco-Canosa, Juan B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Native chemical ligation (NCL) ligates two unprotected peptides in an aqueous buffer. One of the fragments features a C-terminal α-thioester functional group, and the second bears an N-terminal cysteine. The reaction mechanism depicts two steps: an intermolecular thiol–thioester exchange resulting in a transient thioester, followed by an intramolecular S-to-N acyl shift to yield the final native peptide bond. Although this mechanism is well established, the direct observation of the transient thioester has been elusive because the fast intramolecular rearrangement prevents its accumulation. Here, the use of α-selenoester peptides allows a faster first reaction and an early buildup of the intermediate, enabling its quantification and the kinetic monitoring of the first and second steps. The results show a correlation between the steric hindrance in the α-thioester residue and the rearrangement rate. In bulky residues, the S-to-N acyl shift has a significant contribution to the overall reaction rate. This is particularly notable for valine and likely for other similar β-branched amino acids.
ISSN:2691-3704
2691-3704
DOI:10.1021/jacsau.4c00705