Development of a sphingosylphosphorylcholine detection system using RNA aptamers

Sphingosylphosphorylcholine (SPC) is a lysosphingolipid that exerts multiple functions, including acting as a spasmogen, as a mitogenic factor for various types of cells, and sometimes as an inflammatory mediator. Currently, liquid chromatography/tandem mass spectrometry (LC/MS/MS) is used for the q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2010-08, Vol.15 (8), p.5742-5755
Hauptverfasser: Horii, Katsunori, Omi, Kazuya, Yoshida, Yoshihito, Imai, Yuka, Sakai, Nobuya, Oka, Asako, Masuda, Hiromi, Furuichi, Makio, Tanimoto, Tetsuji, Waga, Iwao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sphingosylphosphorylcholine (SPC) is a lysosphingolipid that exerts multiple functions, including acting as a spasmogen, as a mitogenic factor for various types of cells, and sometimes as an inflammatory mediator. Currently, liquid chromatography/tandem mass spectrometry (LC/MS/MS) is used for the quantitation of SPC. However, because of the complicated procedures required it may not be cost effective, hampering its regular usage in a routine practical SPC monitoring. In this report, we have generated RNA aptamers that bind to SPC with high affinity using an in vitro selection procedure and developed an enzyme-linked aptamer assay system using the minimized SPC aptamer that can successfully distinguish SPC from the structurally related sphingosine 1-phosphate (S1P). This is the first case of the Systematic Evolution of Ligands by EXponential enrichment (SELEX) process being performed with a lysosphingolipid. The SPC aptamers would be valuable tools for the development of aptamer-based medical diagnosis and for elucidating the biological role of SPC.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules15085742