Evaluation of Ni-Based Flexible Resistance Temperature Detectors Fabricated by Laser Digital Pattering
Temperature sensors are ubiquitous in every field of engineering application since temperature control is vital in operating, testing and monitoring various equipment systems. Herein, we introduce a facile and rapid laser digital patterning (LDP) process to fabricate low-cost, Ni-based flexible resi...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2021-02, Vol.11 (3), p.576 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Temperature sensors are ubiquitous in every field of engineering application since temperature control is vital in operating, testing and monitoring various equipment systems. Herein, we introduce a facile and rapid laser digital patterning (LDP) process to fabricate low-cost, Ni-based flexible resistance temperature detectors (RTDs). Ni-based RTDs are directly generated on a thin flexible polyimide substrate (thickness: 50 µm) by laser-induced reductive sintering of a solution-processed nonstoichiometric nickel oxide (NiO
) nanoparticle thin film under ambient conditions. The shape of RTDs can be easily adjusted by controlling computer-aided design (CAD) data without using the physical patterning mask while the sensitivity (temperature coefficient of resistance (α) ~ 3.52 × 10
°C
) of the sensors can be maintained regardless of shape and size of the sensor electrodes. The flexible Ni-based RTDs can operate over a wide temperature range up to 200 °C with excellent repeatability. Additionally, the Ni-based RTDs respond quickly to the temperature change and can operate in corrosive environments including water and seawater. Moreover, the Ni-based RTDs show a superior mechanical and electrical stability with a negligible resistance change up to a radius of curvature of 1.75 mm. Finally, a tape-pull test demonstrates the robust adhesion of Ni-based RTDs on the substrate. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano11030576 |