Experimental investigation on surface topography in submerged abrasive waterjet cutting of Ti6Al4V
Some of the key issues with AWJ technology are high roughness, low depth of smooth zone, and grit embedment. When compared to the unsubmerged AWJ, the submerged AWJ gives less divergence and produces higher energy at the cross section of the jet. Hence, this study examined the effects of pressure, t...
Gespeichert in:
Veröffentlicht in: | Advances in industrial and manufacturing engineering 2023-05, Vol.6, p.100113, Article 100113 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Some of the key issues with AWJ technology are high roughness, low depth of smooth zone, and grit embedment. When compared to the unsubmerged AWJ, the submerged AWJ gives less divergence and produces higher energy at the cross section of the jet. Hence, this study examined the effects of pressure, traverse rate, and standoff distance on roughness, depth of smooth zone, and grit embedment in both AWJ conditions. Here, single factor experiments are conducted for experimental investigation wherein one factor is varied and the others are kept constant. In comparison, the submerged AWJ gave significant improvement in the roughness and depth of the smooth zone at lower levels of pressure (150 and 200 MPa), higher levels of traverse rate (300 and 350 mm/min) and standoff distance (4, 5 and 6 mm). The significant difference in grit embedment was observed at lower levels of traverse rate (150 and 200 mm/min), higher levels of pressure (300 and 350 MPa), and all the levels of standoff distance (2, 3, 4, 5, and 6 mm). The grit embedment in the submerged condition was lower due to the removal of initially embedded grits due to flushing action produced by cavitation initiation. |
---|---|
ISSN: | 2666-9129 2666-9129 |
DOI: | 10.1016/j.aime.2023.100113 |