SCHATTEN'S THEOREMS ON FUNCTIONALLY DEFINED SCHUR ALGEBRAS
For each triple of positive numbers p,q,r1 and each commutative C*-algebra with identity 1 and the set s() of states on , the set r() of all matrices i[ajk] over such that [A[r]]:=[(|ajk|r)] defines a bounded operator from p to q for all s() is shown to be a Banach algebra under the Schur product op...
Gespeichert in:
Veröffentlicht in: | International Journal of Mathematics and Mathematical Sciences 2005-01, Vol.2005 (14), p.2175-2193-171 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For each triple of positive numbers p,q,r1 and each commutative C*-algebra with identity 1 and the set s() of states on , the set r() of all matrices i[ajk] over such that [A[r]]:=[(|ajk|r)] defines a bounded operator from p to q for all s() is shown to be a Banach algebra under the Schur product operation, and the norm A=|A|p,q,r=sup{[A[r]]1/r:s()}. Schatten's theorems about the dual of the compact operators, the trace-class operators, and the decomposition of the dual of the algebra of all bounded operators on a Hilbert space are extended to the r() setting. |
---|---|
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/IJMMS.2005.2175 |