Computer Vision System for Mango Fruit Defect Detection Using Deep Convolutional Neural Network

Machine learning techniques play a significant role in agricultural applications for computerized grading and quality evaluation of fruits. In the agricultural domain, automation improves the quality, productivity, and economic growth of a country. The quality grading of fruits is an essential measu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foods 2022-11, Vol.11 (21), p.3483
Hauptverfasser: Nithya, R., Santhi, B., Manikandan, R., Rahimi, Masoumeh, Gandomi, Amir H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine learning techniques play a significant role in agricultural applications for computerized grading and quality evaluation of fruits. In the agricultural domain, automation improves the quality, productivity, and economic growth of a country. The quality grading of fruits is an essential measure in the export market, especially defect detection of a fruit’s surface. This is especially pertinent for mangoes, which are highly popular in India. However, the manual grading of mango is a time-consuming, inconsistent, and subjective process. Therefore, a computer-assisted grading system has been developed for defect detection in mangoes. Recently, machine learning techniques, such as the deep learning method, have been used to achieve efficient classification results in digital image classification. Specifically, the convolution neural network (CNN) is a deep learning technique that is employed for automated defect detection in mangoes. This study proposes a computer-vision system, which employs CNN, for the classification of quality mangoes. After training and testing the system using a publicly available mango database, the experimental results show that the proposed method acquired an accuracy of 98%.
ISSN:2304-8158
2304-8158
DOI:10.3390/foods11213483